Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation

Author:

Meng Han1,Xu Nengxiong1ORCID,Zhu Yunfu2,Mei Gang1ORCID

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. Geological Environment Monitoring Institute of Jiangxi Geological Survey and Exploration Institute, Nanchang 330006, China

Abstract

Structural planes are one of the key factors controlling the stability of rock masses. A comprehensive understanding of the spatial distribution characteristics of structural planes is essential for accurately identifying key blocks, analyzing rock mass stability, and addressing various rock engineering challenges. This study compares the effectiveness of four stochastic structural plane generation methods—the Monte Carlo method, the Copula-based method, generative adversarial networks (GAN), and denoised diffusion models (DDPM)—in generating stochastic structural planes and capturing potential correlations between structural plane parameters. The Monte Carlo method employs the mean and variance of three parameters of the measured factual structural planes to generate data that follow the same distributions. The other three methods take the entire set of measured factual structural planes as the overall input to generate structural planes that exhibit the same probability distributions. Five sets of structural planes on four rock slopes in Norway are examined as an example. The validation and analysis were performed using histogram comparison, data feature comparison, scatter plot comparison, and linear regression analysis. The results show that the Monte Carlo method fails to capture the potential correlation between the dip direction and dip angle despite the best fit to the measured factual structural planes. The Copula-based method performs better with smaller datasets, and GAN and DDPM are better at capturing the correlation of measured factual structural planes in the case of large datasets. Therefore, in the case of a limited number of measured structural planes, it is advisable to employ the Copula-based method. In scenarios where the dataset is extensive, the deep generative model is recommended due to its ability to capture complex data structures. The results of this study can be utilized as a valuable point of reference for the accurate generation of stochastic structural planes within rock masses.

Funder

National Natural Science Foundation of China

2023 Geological Disaster Prevention and Control Public Welfare Project of Jiangxi Provincial Geological Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3