Symbolic Computation of the Lie Algebra se(3) of the Euclidean Group SE(3): An Application to the Infinitesimal Kinematics of Robot Manipulators

Author:

Gallardo-Alvarado Jaime1ORCID,Garcia-Murillo Mario A.2ORCID,Tabares-Martinez Juan Manuel1,Sandoval-Castro X. Yamile3ORCID

Affiliation:

1. Department of Mechanical Engineering, National Technological Institute of Mexico, Celaya Campus, Celaya 38010, Mexico

2. Department of Mechanical Engineering, DICIS, University of Guanajuato, Salamanca 36885, Mexico

3. School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico

Abstract

This paper reports an application of the Lie algebra se(3) of the Euclidean group SE(3), which is isomorphic to the theory of screws in the velocity and acceleration analyses of serial manipulators. The symbolic computation of the infinitesimal kinematics allows one to obtain algebraic expressions related to the kinematic characteristics of the end effector of the serial manipulator, while in the case of complex manipulators, numerical computations are preferred owing to the emergence of long terms. The algorithm presented enables the symbolic computation of the velocity and acceleration characteristics of the end effector in serial manipulators in order to allow the compact and efficient modeling of velocity and acceleration analyses of both parallel and serial robotic manipulators. Unlike other algebras, these procedures can be extended without significant effort to higher-order analyses such as the jerk and jounce.

Publisher

MDPI AG

Reference24 articles.

1. Ball, R.S. (1900). A Treatise on the Theory of Screws, Cambridge University Press. reprinted 1998.

2. Hunt, K.H. (1978). Kinematic Geometry of Mechanisms, Oxford University Press.

3. Phillips, J. (1984). Freedom in Machinery: Introducing Screw Theory, Cambridge University Press.

4. Singularity analysis of serial robot-manipulators;Karger;ASME Mech. Des.,1996

5. Higher derivatives of the kinematic mapping and some applications;Mech. Mach. Theory,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3