An Expanded Spatial Durbin Model with Ordinary Kriging of Unobserved Big Climate Data

Author:

Falah Annisa Nur1ORCID,Andriyana Yudhie2ORCID,Ruchjana Budi Nurani3ORCID,Hermawan Eddy4ORCID,Harjana Teguh4ORCID,Maryadi Edy5ORCID,Risyanto 4ORCID,Satyawardhana Haries4ORCID,Sipayung Sinta Berliana4

Affiliation:

1. Post Doctoral Program, Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

2. Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

3. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

4. Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia

5. Research Center for Artificial Intelligence and Cyber Security, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia

Abstract

Spatial models are essential in the prediction of climate phenomena because they can model the complex relationships between different locations. In this study, we discuss an expanded spatial Durbin model with ordinary kriging on unobserved locations (ESDMOK) to predict rainfall patterns in Java Island. The classical spatial Durbin model needed to be expanded to obtain a parameter estimation for each location. We combined this with ordinary kriging because the data were not available in some locations. The data were taken from the National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER) website. Since climate data are big data, we implement a big data analytics approach, namely the data analytics life cycle method. As the exogenous variables, we used air temperature, humidity, solar irradiation, wind speed, and surface pressure. The authors developed an R-Shiny web applications to implement our proposed technique. Using our proposed technique, we obtained more accurate and reliable climate data prediction, indicated by the mean absolute percentage error (MAPE), which was equal to 1.956%. The greatest effect on rainfall was given by the surface pressure variable, and the smallest was wind speed.

Funder

Universitas Padjadjaran

Ministry of Research, Technology and Higher Education Indonesia

Publisher

MDPI AG

Reference28 articles.

1. (2024, February 28). NASA Overview: Weather, Global Warming, and Climate Change, Available online: https://science.nasa.gov/climate-change/what-is-climate-change/.

2. (2024, March 07). Ditjenppi Dampak dan Fenomena Perubahan Iklim, Available online: http://ditjenppi.menlhk.go.id/kcpi/index.php/info-iklim/dampak-fenomena-perubahan-iklim.

3. (2024, April 05). BMKG Analisis Dinamika Atmosfer Dasarian III Mei 2022, Available online: https://www.bmkg.go.id/iklim/dinamika-atmosfir.bmkg.

4. (2024, April 05). SDGs Indonesia Sustainable Development Goals (SDGs)-Tujuan 13. Available online: https://indonesia.un.org/id/sdgs/13/key-activities.

5. Hatfield, G. (2018). Spatial statistics. Practical Mathematics for Precision Farming, Wiely.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3