Formal Modeling and Verification of Lycklama and Hadzilacos’s Mutual Exclusion Algorithm

Author:

Nigro Libero1ORCID

Affiliation:

1. DIMES Department, University of Calabria, 87036 Rende, Italy

Abstract

This study describes our thorough experience of formal modeling and exhaustive verification of concurrent systems, particularly mutual exclusion algorithms. The experience focuses on Lycklama and Hadzilacos’s (LH) mutual exclusion algorithm. LH rests on the reduced size of the shared state, contains a mechanism that tries to enforce an FCFS order to processes entering their critical section, and embodies Burns and Lamport’s (BL) mutual exclusion algorithm. The modeling methodology is based on timed automata and the model checker of the popular Uppaal toolbox. The effectiveness of the modeling and analysis approach is first demonstrated by studying the BL’s solution and retrieving all its properties, including, in general, its unbounded overtaking, which is the non-limited number of by-passes a process can suffer before accessing its critical section. Then, the LH algorithm is investigated in depth by showing it fulfills all the mutual exclusion properties when it operates with atomic memory. However, as this study demonstrates, LH is not free of deadlocks when used with non-atomic memory. Finally, a state-of-the-art mutual exclusion solution is proposed, which relies on a stripped-down LH version for processes, which is used as the arbitration unit in a tournament tree (TT) organization. This study documents that LH’s TT-based algorithm satisfies all the mutual exclusion properties, with a linear overtaking, both using atomic and non-atomic memory.

Publisher

MDPI AG

Reference30 articles.

1. The mutual exclusion problem: Part I—Theory of interprocess communication, and part II—Statement and solutions;Lamport;J. ACM,1986

2. Raynal, M. (1986). Algorithms for Mutual Exclusion Problem, The MIT Press.

3. Raynal, M. (2013). Concurrent Programming: Algorithms, Principles, and Foundations, Springer-Verlag.

4. Herlihy, M., and Shavit, N. (2012). The Art of Multiprocessor Programming, Morgan Kaufmann.

5. Genuys, F. (1966). Co-operating sequential processes. Programming Languages: NATO Advanced Study Institute: Lectures Given at a Three Weeks Summer School Held in Villard-le-Lans, Academic Press Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Property assessment of Peterson's mutual exclusion algorithms;Applied Computing and Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3