Progressive Archive in Adaptive jSO Algorithm

Author:

Bujok Petr1ORCID

Affiliation:

1. Department of Informatics and Computers, University of Ostrava, 30. Dubna 22, 70103 Ostrava, Czech Republic

Abstract

The problem of optimisation methods is the stagnation of population P, which results in a local solution for the task. This problem can be solved by employing an archive for good historical solutions outperformed by the new better offspring. The archive A was introduced with the variant of adaptive differential evolution (DE), and it was successfully applied in many adaptive DE variants including the efficient jSO algorithm. In the original jSO, the historical good individuals replace the random existing positions in A. It causes that outperformed historical solution from P with lower quality to replace the stored solution in A with better quality. In this paper, a new approach to replace individuals in archive A more progressively is proposed. Outperformed individuals from P replace solutions in the worse part of A based on the function value. The portion of A selected for replacement is controlled by the input parameter, and its setting is studied in this experiment. The proposed progressive archive is employed in the original jSO. Moreover, the Eigenvector transformation of the individuals for crossover is applied to increase the efficiency for the rotated optimisation problems. The efficiency of the proposed progressive archive and the Eigen crossover are evaluated using the set of 29 optimisation problems for CEC 2024 and various dimensionality. All the experiments were performed on a standard PC, and the results were compared using the standard statistical methods. The newly proposed algorithm with the progressive archive approach performs substantially better than the original jSO, especially when 20 or 40% of the worse individuals of A are set for replacement. The Eigen crossover increases the performance of the proposed jSO algorithm with the progressive archive approach. The estimated time complexity illustrates the low computational demands of the proposed archive approach.

Publisher

MDPI AG

Reference20 articles.

1. Storn, R., and Price, K.V. (1995). Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, International Computer Science Institute. Available online: https://cse.engineering.nyu.edu/~mleung/CS909/s04/Storn95-012.pdf.

2. Differential evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces;Storn;J. Glob. Optim.,1997

3. Recent advances in differential evolution—An updated survey;Das;Swarm Evol. Comput.,2016

4. Differential Evolution: A Survey of the State-of-the-Art;Das;IEEE Trans. Evol. Comput.,2011

5. No Free Lunch Theorems for Optimization;Wolpert;IEEE Trans. Evol. Comput.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3