Task-Importance-Oriented Task Selection and Allocation Scheme for Mobile Crowdsensing

Author:

Chang Sha1ORCID,Wu Yahui1,Deng Su1,Ma Wubin1,Zhou Haohao1

Affiliation:

1. Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology, Changsha 410073, China

Abstract

In Mobile Crowdsensing (MCS), sensing tasks have different impacts and contributions to the whole system or specific targets, so the importance of the tasks is different. Since resources for performing tasks are usually limited, prioritizing the allocation of resources to more important tasks can ensure that key data or information can be collected promptly and accurately, thus improving overall efficiency and performance. Therefore, it is very important to consider the importance of tasks in the task selection and allocation of MCS. In this paper, a task queue is established, the importance of tasks, the ability of participants to perform tasks, and the stability of the task queue are considered, and a novel task selection and allocation scheme (TSAS) in the MCS system is designed. This scheme introduces the Lyapunov optimization method, which can be used to dynamically keep the task queue stable, balance the execution ability of participants and the system load, and perform more important tasks in different system states, even when the participants are limited. In addition, the Double Deep Q-Network (DDQN) method is introduced to improve on the traditional solution of the Lyapunov optimization problem, so this scheme has a certain predictive ability and foresight on the impact of future system states. This paper also proposes action-masking and iterative training methods for the MCS system, which can accelerate the training process of the neural network in the DDQN and improve the training effect. Experiments show that the TSAS based on the Lyapunov optimization method and DDQN performs better than other algorithms, considering the long-term stability of the queue, the number and importance of tasks to be executed, and the congestion degree of tasks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3