Riemann Problem for the Isentropic Euler Equations of Mixed Type in the Dark Energy Fluid

Author:

Chen Tingting1ORCID,Jiang Weifeng2ORCID,Li Tong3ORCID,Wang Zhen4,Lin Junhao2

Affiliation:

1. School of Mathematics and Computer Sciences, Jianghan University, Wuhan 430056, China

2. Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China

3. Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA

4. Center for Mathematical Sciences, Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

Abstract

We are concerned with the Riemann problem for the isentropic Euler equations of mixed type in the dark energy fluid. This system is non-strictly hyperbolic on the boundary curve of elliptic and hyperbolic regions. We obtain the unique admissible shock waves by utilizing the viscosity criterion. Assuming fixed left states are in the elliptic and hyperbolic regions, respectively, we construct the unique Riemann solution for the mixed-type models with the initial right state in some feasible regions. Finally, we present numerical simulations which are consistent with our theoretical results.

Funder

Zhejiang Provincial Natural Science Foundation

the Fundamental Research Funds for 336 the Provincial Universities of Zhejiang

National Natural Science Foundation of China

Publisher

MDPI AG

Reference41 articles.

1. Convergence of viscosity method for isentropic gas dynamics;Diperna;Commun. Math. Phys.,1983

2. Generalized Logarithmic equation of state in classical and loop quantum cosmology dark energy-dark matter coupled systems;Oikonomou;Ann. Phys.,2019

3. Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the H0 tension;Pan;Phys. Rev. D,2019

4. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases;Mayer;Intermetallics,2003

5. Chen, G.Q. (1990). The Theory of Compensated Compactness and the System of Isentropic Gas Dynamics, Math Sciences Research Institute. Preprint 00527-91.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3