SOCA-PRNet: Spatially Oriented Attention-Infused Structured-Feature-Enabled PoseResNet for 2D Human Pose Estimation

Author:

Zakir Ali1ORCID,Salman Sartaj Ahmed1ORCID,Takahashi Hiroki12

Affiliation:

1. Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

2. Artificial Intelligence Exploration Research Center/Meta-Networking Research Center, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

In the recent era, 2D human pose estimation (HPE) has become an integral part of advanced computer vision (CV) applications, particularly in understanding human behaviors. Despite challenges such as occlusion, unfavorable lighting, and motion blur, advancements in deep learning have significantly enhanced the performance of 2D HPE by enabling automatic feature learning from data and improving model generalization. Given the crucial role of 2D HPE in accurately identifying and classifying human body joints, optimization is imperative. In response, we introduce the Spatially Oriented Attention-Infused Structured-Feature-enabled PoseResNet (SOCA-PRNet) for enhanced 2D HPE. This model incorporates a novel element, Spatially Oriented Attention (SOCA), designed to enhance accuracy without significantly increasing the parameter count. Leveraging the strength of ResNet34 and integrating Global Context Blocks (GCBs), SOCA-PRNet precisely captures detailed human poses. Empirical evaluations demonstrate that our model outperforms existing state-of-the-art approaches, achieving a Percentage of Correct Keypoints at 0.5 (PCKh@0.5) of 90.877 at a 50% threshold and a Mean Precision (Mean@0.1) score of 41.137. These results underscore the potential of SOCA-PRNet in real-world applications such as robotics, gaming, and human–computer interaction, where precise and efficient 2D HPE is paramount.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3