LSTM-CNN Network-Based State-Dependent ARX Modeling and Predictive Control with Application to Water Tank System

Author:

Kang Tiao12ORCID,Peng Hui1,Peng Xiaoyan3

Affiliation:

1. School of Automation, Central South University, Changsha 410083, China

2. Engineering Training Center, Hunan Institute of Engineering, Xiangtan 411101, China

3. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

Abstract

Industrial process control systems commonly exhibit features of time-varying behavior, strong coupling, and strong nonlinearity. Obtaining accurate mathematical models of these nonlinear systems and achieving satisfactory control performance is still a challenging task. In this paper, data-driven modeling techniques and deep learning methods are used to accurately capture a category of a smooth nonlinear system’s spatiotemporal features. The operating point of these systems may change over time, and their nonlinear characteristics can be locally linearized. We use a fusion of the long short-term memory (LSTM) network and convolutional neural network (CNN) to fit the coefficients of the state-dependent AutoRegressive with the eXogenous variable (ARX) model to establish the LSTM-CNN-ARX model. Compared to other models, the hybrid LSTM-CNN-ARX model is more effective in capturing the nonlinear system’s spatiotemporal characteristics due to its incorporation of the strengths of LSTM for learning temporal characteristics and CNN for capturing spatial characteristics. The model-based predictive control (MPC) strategy, namely LSTM-CNN-ARX-MPC, is developed by utilizing the model’s local linear and global nonlinear features. The control comparison experiments conducted on a water tank system show the effectiveness of the developed models and MPC methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3