A Back-Drivable Rotational Force Actuator for Adaptive Grasping

Author:

Wu Xiaofeng12,Hua Hongliang13,Zhao Che1,Shi Naiyu1,Wu Zhiwei4

Affiliation:

1. School of Aeronautics and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213032, China

2. Shandong Lingong Construction Machinery Co., Ltd., Linyi 276023, China

3. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

4. College of Art and Communication, China Jiliang University, Hangzhou 310018, China

Abstract

In this paper, a back-drivable and miniature rotary series elastic actuator (RSEA) is proposed for robotic adaptive grasping. A compact arc grooves design has been proposed to effectively reduce the dimension of the RSEA system. The elastic elements could be reliably embedded in the arc grooves without any additional installation structures. The whole RSEA system is characterized as compact, miniature, and modular. The actuating force is controlled via a PI controller by tracking the deformation trajectory of the elastic elements. An underactuated finger mechanism has been adopted to investigate the effectiveness of the RSEA in robotic adaptive grasping. Results reveal that the underactuated finger mechanism could achieve adaptive grasping via the RSEA in a back-drive approach without the requirement of a fingertip force sensor. The RSEA could also exhibit an actuating compliance and a self-sensing characteristic. The actuating compliance characteristic helps in in guaranteeing the safety of human–robot interaction. The RSEA could estimate the external disturbance due to its self-sensing characteristic, which has the potential to replace the fingertip force sensor in grasping force perception applications.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science of Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3