EDAR 4.0: Machine Learning and Visual Analytics for Wastewater Management

Author:

Velásquez David1234ORCID,Vallejo Paola1ORCID,Toro Mauricio1ORCID,Odriozola Juan3ORCID,Moreno Aitor5ORCID,Naveran Gorka6,Giraldo Michael2ORCID,Maiza Mikel3ORCID,Sierra Basilio4ORCID

Affiliation:

1. RID on Information Technologies and Communications Research Group (GIDITIC), Universidad EAFIT, Carrera 49 No. 7 Sur-50, Medellín 050022, Colombia

2. Industry, Materials and Energy Area, Universidad EAFIT, Carrera 49 No. 7 Sur-50, Medellín 050022, Colombia

3. Department of Data Intelligence for Energy and Industrial Processes, Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain

4. Department of Computer Science and Artificial Intelligence, University of Basque Country, Manuel Lardizabal Ibilbidea, 1, 20018 Donostia-San Sebastián, Spain

5. Department of R&D, Ibermática, Cercas Bajas, 7 int.-Office 2, 01001 Vitoria-Gasteiz, Spain

6. Department of R&D, Giroa-Veolia, Laida Bidea, Building 407, 48170 Zamudio, Spain

Abstract

Wastewater treatment plant (WWTP) operations manage massive amounts of data that can be gathered with new Industry 4.0 technologies such as the Internet of Things and Big Data. These data are critical to allow the wastewater treatment industry to improve its operation, control, and maintenance. However, the data available need to be improved and enriched, partly due to their high dimensionality and low reliability, and the lack of appropriate data analysis and processing tools for such systems. This paper presents a visual analytics-based platform for WWTP that allows users to identify relationships among data through data inspection. The results show that the tool developed and implemented for a full-scale WWTP allows operators to construct machine learning (ML) models for water quality and other water treatment process variables. Consequently, analyzing and optimizing plant operation scenarios can enhance key variables, including energy, reagent consumption, and water quality. This improvement facilitates the development of a more sustainable WWTP, contributing to a beneficial environmental impact. Domain experts validated the variables influencing the created ML models and proved their appropriateness.

Funder

Vicomtech

Universidad EAFIT

Publisher

MDPI AG

Reference36 articles.

1. Keim, D., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., and Melançon, G. (2008). Information Visualization: Human-Centered Issues and Perspectives, Springer.

2. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0;Galar;Inf. Fusion,2019

3. Data-driven performance analyses of wastewater treatment plants: A review;Newhart;Water Res.,2019

4. New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment;Luo;Sci. Total Environ.,2017

5. Maiza, M., Odriozola, J., Gil, A., Naveran, G., Basagoiti, R., Lecuona, I., Zurutuza, U., Urchegi, G., and Mañas, A. (2017, January 16–18). Visual Analytics for supporting the Management of WWTPs. Proceedings of the Young Water Professionals (YWP) Conference, 2017, Bilbao, Spain.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3