Prediction and Feed-In Tariffs of Municipal Solid Waste Generation in Beijing: Based on a GRA-BiLSTM Model

Author:

Zhang Xia1,Liu Bingchun2

Affiliation:

1. Tianjin Zhongxinde Metal Structure Co., Ltd., Tianjin 300380, China

2. School of Management, Tianjin University of Technology, Tianjin 300384, China

Abstract

To cope with the increasing energy demand of people and solve the problem of a “Garbage Siege”, most cities have begun to adopt waste power generation (WTE). Compared to other WTE technologies, incineration has proven to be the most efficient technology for municipal solid waste (MSW) treatment. Therefore, to further explore the economic feasibility of MSW incineration plant construction, this study established a multi-factor prediction of MSW generation based on the GRA-BiLSTM model. By fully considering the relationship between the change in feed-in tariff (FIT) and the building of an incineration plant in Beijing, the economic feasibility of building an incineration plant is discussed based on the three scenarios set. The experimental results showed that (1) the combined model based on the GRA-BiLSTM showed good applicability for predicting MSW generation in Beijing, with MAE, MAPE, RMSE, and R2 values of 12.47, 5.97%, 18.5580, and 0.8950, respectively. (2) Based on the three scenarios set, the incineration power generation of Beijing MSW will show varying degrees of growth in 2022–2035. In order to meet future development, Beijing needs to build seven new incinerators, and the incineration rate should reach 100%. (3) According to setting different feed-in tariffs, based on the economic feasibility analysis, it is found that the feed-in tariff of MSW incineration for power generation in Beijing should be no less than $0.522/kWh. The government should encourage the construction of incineration plants and give policy support to enterprises that build incineration plants.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3