Roles of Microbial Community and Keystone Taxa in Rice Productivity under Green Manuring in South China

Author:

Feng Yu1,Liang Hai2,Nie Jun3,Li Yongmei4,Cao Weidong5ORCID

Affiliation:

1. College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China

2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

3. Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China

4. College of Resources and Environment, Yunnan Agricultural University, Kunming 650500, China

5. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Green manure (GM)–rice–rice rotation is an important management practice for improving soil fertility and rice productivity. The microbiological mechanisms for the increase in grain yield in GM–rice–rice rotation remain unclear. The responses of soil biodiversity, bacterial and fungal communities, and their interactions in the GM–rice–rice rotation were investigated based on two long-term field experiments in Gaoqiao (GQ) and Nanxian (NX) in Hunan Province, south China. Results showed that rice yields were raised by 11.79% and 15.03% under GM in GQ and NX, respectively. GM promoted Shannon diversity and Pielou’s evenness and changed the community structures of bacteria and fungi. The co-occurrence network analysis found that the percentages of negative edges were higher in GM (40.79% and 44.32% in GQ and NX, respectively) than those in the corresponding winter fallow (34.86% and 29.13% in GQ and NX, respectively) in the combined bacterial–fungal networks, suggesting more stable microbial community under GM. Moreover, GM had higher percentages of bacterial–fungal and fungal–fungal edges than winter fallow, indicating that GM increased the interaction between bacteria and fungi and fungi play more essential roles in affecting soil processes under GM. The keystone taxa in GM were positively linked with C metabolism-related enzymes and soil multifunctionality, and were important in improving soil fertility and rice productivity. We concluded that the fungal community was more sensitive to GM application than the bacterial community and that keystone taxa had important influences on soil properties and rice productivity in the GM–double-rice cropping system, which can effectively support the sustainable development of the paddy field ecosystem in southern China.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

earmarked fund for China Agriculture Research System-Green manure

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3