Electromagnetic Scattering of Near-Field Turbulent Wake Generated by Accelerated Propeller

Author:

Deng Yuxin,Zhang MinORCID,Jiang Wangqiang,Wang Letian

Abstract

The electromagnetic scattering study of the turbulent wake of a moving ship has important application value in target recognition and tracking. However, to date, there has been insufficient research into the electromagnetic characteristics of near-field propeller turbulence. This study presents a new procedure for evaluating the electromagnetic scattering coefficient and imaging characteristics of turbulent wakes in the near field. By controlling the different values of the net momenta, a turbulent wake was generated using the large-eddy simulation method. The results show that the net momentum transferred to the background flow field determines the development of the turbulent wake, which explains the formation mechanism of the turbulence. Combined with the turbulent energy attenuation spectrum, the electromagnetic scattering characteristics of the turbulent wake were calculated using the two-scale facet mode. Using this method, the impact of different parameters on the scattering coefficient and the electromagnetic image of the turbulence wake were investigated, to explain the modulation mechanism and electromagnetic imaging characteristics of the near-field turbulent wake. Moreover, an application for estimating a ship’s heading is proposed based on the electromagnetic imaging characteristics of the turbulent wake.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3