Deep Learning-Based Object Detection System for Identifying Weeds Using UAS Imagery

Author:

Etienne AaronORCID,Ahmad Aanis,Aggarwal VarunORCID,Saraswat DharmendraORCID

Abstract

Current methods of broadcast herbicide application cause a negative environmental and economic impact. Computer vision methods, specifically those related to object detection, have been reported to aid in site-specific weed management procedures for targeted herbicide application within a field. However, a major challenge to developing a weed detection system is the requirement for a properly annotated database to differentiate between weeds and crops under field conditions. This research involved creating an annotated database of 374 red, green, and blue (RGB) color images organized into monocot and dicot weed classes. The images were acquired from corn and soybean research plots located in north-central Indiana using an unmanned aerial system (UAS) flown at 30 and 10 m heights above ground level (AGL). A total of 25,560 individual weed instances were manually annotated. The annotated database consisted of four different subsets (Training Image Sets 1–4) to train the You Only Look Once version 3 (YOLOv3) deep learning model for five separate experiments. The best results were observed with Training Image Set 4, consisting of images acquired at 10 m AGL. For monocot and dicot weeds, respectively, an average precision (AP) score of 91.48 % and 86.13% was observed at a 25% IoU threshold (AP @ T = 0.25), as well as 63.37% and 45.13% at a 50% IoU threshold (AP @ T = 0.5). This research has demonstrated a need to develop large, annotated weed databases to evaluate deep learning models for weed identification under field conditions. It also affirms the findings of other limited research studies utilizing object detection for weed identification under field conditions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3