Progress Guidance Representation for Robust Interactive Extraction of Buildings from Remotely Sensed Images

Author:

Shu Zhen,Hu Xiangyun,Dai Hengming

Abstract

Accurate building extraction from remotely sensed images is essential for topographic mapping, cadastral surveying and many other applications. Fully automatic segmentation methods still remain a great challenge due to the poor generalization ability and the inaccurate segmentation results. In this work, we are committed to robust click-based interactive building extraction in remote sensing imagery. We argue that stability is vital to an interactive segmentation system, and we observe that the distance of the newly added click to the boundaries of the previous segmentation mask contains progress guidance information of the interactive segmentation process. To promote the robustness of the interactive segmentation, we exploit this information with the previous segmentation mask, positive and negative clicks to form a progress guidance map, and feed it to a convolutional neural network (CNN) with the original RGB image, we name the network as PGR-Net. In addition, an adaptive zoom-in strategy and an iterative training scheme are proposed to further promote the stability of PGR-Net. Compared with the latest methods FCA and f-BRS, the proposed PGR-Net basically requires 1–2 fewer clicks to achieve the same segmentation results. Comprehensive experiments have demonstrated that the PGR-Net outperforms related state-of-the-art methods on five natural image datasets and three building datasets of remote sensing images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. U-Net: Convolutional Networks for Biomedical Image Segmentation

2. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling;Badrinarayanan;arXiv,2015

3. Intelligent scissors for image composition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3