Synthesizing Disparate LiDAR and Satellite Datasets through Deep Learning to Generate Wall-to-Wall Regional Inventories for the Complex, Mixed-Species Forests of the Eastern United States

Author:

Ayrey EliasORCID,Hayes Daniel J.ORCID,Kilbride John B.ORCID,Fraver Shawn,Kershaw John A.,Cook Bruce D.ORCID,Weiskittel Aaron R.ORCID

Abstract

Light detection and ranging (LiDAR) has become a commonly-used tool for generating remotely-sensed forest inventories. However, LiDAR-derived forest inventories have remained uncommon at a regional scale due to varying parameters among LiDAR data acquisitions and the availability of sufficient calibration data. Here, we present a model using a 3-D convolutional neural network (CNN), a form of deep learning capable of scanning a LiDAR point cloud, combined with coincident satellite data (spectral, phenology, and disturbance history). We compared this approach to traditional modeling used for making forest predictions from LiDAR data (height metrics and random forest) and found that the CNN had consistently lower uncertainty. We then applied the CNN to public data over six New England states in the USA, generating maps of 14 forest attributes at a 10 m resolution over 85% of the region. Aboveground biomass estimates produced a root mean square error of 36 Mg ha−1 (44%) and were within the 97.5% confidence of independent county-level estimates for 33 of 38 or 86.8% of the counties examined. CNN predictions for stem density and percentage of conifer attributes were moderately successful, while predictions for detailed species groupings were less successful. The approach shows promise for improving the prediction of forest attributes from regional LiDAR data and for combining disparate LiDAR datasets into a common framework for large-scale estimation.

Funder

Maine Agricultural and Forest Experiment Station

Maine Agricultural Forest Experiment Station

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3