Abstract
Shortfalls in regular evapotranspiration (ET) monitoring and evaluation pose a huge challenge to agricultural water resource distribution in arid Central Asia (CA). In this study, a first detailed regional assessment of GLEAM, ERA5, MERRA2, CLSM and NOAH ET products in CA was performed by systematically implementing the triple collocation (TC) method, in which about 36,936 grid cells for each ET data (within a six-triplet design) were collocated, at 0.25° and with monthly resolutions during 2003–2020. The reliability of the strategy adopted was confirmed in four arid biomes using standard evaluation metrics (R, RMSE and BIAS), and by spatiotemporal cross-validation of the six ET triplets across CA. Results show that the systematic TC method produced more robust ET product assessment metrics with reduced RMSEs compared to the initial ET product validation using in-situ, which showed weak-positive correlation and high negative bias-range (i.e., −21.02 ≤ BIAS < 16 mm) in the four arid biomes of CA. The spatial cross-validation by TC showed that the magnitude of ET random errors significantly varies, and confirms the systematic biases with site-scale measurements. The highest ET uncertainties by CLSM (27.43%), NOAH (29.16%), MERRA2 (38.28%), ERA5 (36.75), and GLEAM (41%) were more evident in the shrubland, cropland, grassland, cropland again, and desert biomes, respectively. Moreover, error magnitudes in high altitudes (Tianshan Mountain range) are generally lower than in plain-desert areas. All ET products spatially captured ET dynamics over CA, but none simultaneously outperformed the other. These findings are invaluable in the utilization of the assessed ET products in supporting regional water resource management, particularly in CA.
Funder
National Natural Science 922 Foundation of China
West Light Foundation of The Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献