Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco

Author:

Kacic Patrick,Hirner Andreas,Da Ponte EmmanuelORCID

Abstract

Vegetation structure is a key component in assessing habitat quality for wildlife and carbon storage capacity of forests. Studies conducted at global scale demonstrate the increasing pressure of the agricultural frontier on tropical forest, endangering their continuity and biodiversity within. The Paraguayan Chaco has been identified as one of the regions with the highest rate of deforestation in South America. Uninterrupted deforestation activities over the last 30 years have resulted in the loss of 27% of its original cover. The present study focuses on the assessment of vegetation structure characteristics for the complete Paraguayan Chaco by fusing Sentinel-1, -2 and novel spaceborne Light Detection and Ranging (LiDAR) samples from the Global Ecosystem Dynamics Investigation (GEDI). The large study area (240,000 km2) calls for a workflow in the cloud computing environment of Google Earth Engine (GEE) which efficiently processes the multi-temporal and multi-sensor data sets for extrapolation in a tile-based random forest (RF) regression model. GEDI-derived attributes of vegetation structure are available since December 2019, opening novel research perspectives to assess vegetation structure composition in remote areas and at large-scale. Therefore, the combination of global mapping missions, such as Landsat and Sentinel, are predestined to be combined with GEDI data, in order to identify priority areas for nature conservation. Nevertheless, a comprehensive assessment of the vegetation structure of the Paraguayan Chaco has not been conducted yet. For that reason, the present methodology was developed to generate the first high-resolution maps (10 m) of canopy height, total canopy cover, Plant-Area-Index and Foliage-Height-Diversity-Index. The complex ecosystems of the Paraguayan Chaco ranging from arid to humid climates can be described by canopy height values from 1.8 to 17.6 m and canopy covers from sparse to dense (total canopy cover: 0 to 78.1%). Model accuracy according to median R2 amounts to 64.0% for canopy height, 61.4% for total canopy cover, 50.6% for Plant-Area-Index and 48.0% for Foliage-Height-Diversity-Index. The generated maps of vegetation structure should promote environmental-sound land use and conservation strategies in the Paraguayan Chaco, to meet the challenges of expanding agricultural fields and increasing demand of cattle ranching products, which are dominant drivers of tropical forest loss.

Funder

Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Global Forest Monitoring from Earth Observation

2. Aboveground Forest Biomass and the Global Carbon Balance

3. Global biodiversity conservation: The critical role of hotspots;Mittermeier,2011

4. Role of forest regrowth in global carbon sink dynamics

5. Why forest monitoring matters for people and the planet;DeFries;Glob. For. Monit. Earth Obs.,2013

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3