Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates

Author:

Urbina-Salazar DiegoORCID,Vaudour EmmanuelleORCID,Baghdadi NicolasORCID,Ceschia Eric,Richer-de-Forges Anne C.ORCID,Lehmann Sébastien,Arrouays DominiqueORCID

Abstract

In agronomy, soil organic carbon (SOC) content is important for the development and growth of crops. From an environmental monitoring viewpoint, SOC sequestration is essential for mitigating the emission of greenhouse gases into the atmosphere. SOC dynamics in cropland soils should be further studied through various approaches including remote sensing. In order to predict SOC content over croplands in southwestern France (area of 22,177 km²), this study addresses (i) the influence of the dates on which Sentinel-2 (S2) images were acquired in the springs of 2017–2018 as well as the influence of the soil sampling period of a set of samples collected between 2005 and 2018, (ii) the use of soil moisture products (SMPs) derived from Sentinel-1/2 satellites to analyze the influence of surface soil moisture on model performance when included as a covariate, and (iii) whether the spatial distribution of SOC as mapped using S2 is related to terrain-derived attributes. The influences of S2 image dates and soil sampling periods were analyzed for bare topsoil. The dates of the S2 images with the best performance (RPD ≥ 1.7) were 6 April and 26 May 2017, using soil samples collected between 2016 and 2018. The soil sampling dates were also analyzed using SMP values. Soil moisture values were extracted for each sample and integrated into partial least squares regression (PLSR) models. The use of soil moisture as a covariate had no effect on the prediction performance of the models; however, SMP values were used to select the driest dates, effectively mapping topsoil organic carbon. S2 was able to predict high SOC contents in the specific soil types located on the old terraces (mesas) shaped by rivers flowing from the southwestern Pyrénées.

Funder

Programme National de Télédétection Spatiale

Centre National d'Études Spatiales

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference66 articles.

1. Global Soil Organic Map V1.5: Technical Report,2020

2. Agriculture, Forestry and Other Land Use (AFOLU). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Smith,2014

3. Soil organic matter: A source of atmospheric CO2;Schlesinger;Role Terr. Veg. Glob. Carbon Cycle Meas. Remote Sens.,1984

4. Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3