Disposable Sensor Chips with Molecularly Imprinted Carbon Paste Electrodes for Monitoring Anti-Epileptic Drugs

Author:

Aaryashree 1ORCID,Choudhary Ashish Kumar2,Yoshimi Yasuo2ORCID

Affiliation:

1. Innovative Global Program, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan

2. Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan

Abstract

Epilepsy is a neurological disorder that affects millions of people worldwide. Anti-epileptic drugs (AEDs) are critical for their management. However, the therapeutic window is narrow, and traditional laboratory-based therapeutic drug monitoring (TDM) methods can be time consuming and unsuitable for point-of-care testing. To address this issue, we developed a disposable sensor chip based on molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPs) for the TDM of AEDs such as phenobarbital (PB), carbamazepine (CBZ), and levetiracetam (LEV). In this work, functional monomers (methacrylic acid) and crosslinking monomers (methylene bisacrylamide and ethylene glycol dimethacrylate) were copolymerized in the presence of the AED template and grafted on the graphite particles by simple radical photopolymerization. The grafted particles were mixed with silicon oil, dissolving ferrocene as a redox marker to make the MIP-carbon paste (CP). Disposable sensor chips were fabricated by packing the MIP-CP into the base made of poly (ethylene glycol terephthalate) (PET) film. The sensor’s sensitivity was determined using differential pulse voltammetry (DPV), carried out on a single sensor chip for each operation. Linearity was obtained from 0–60 μg/mL in PB and LEV and 0–12 μg/mL in CBZ, covering their respective therapeutic range. The time taken for each measurement was around 2 min. The experiment using whole bovine blood and bovine plasma indicated that the existence of species that interfered had a negligible effect on the test’s sensitivity. This disposable MIP sensor provides a promising approach for point-of-care testing and facilitating the management of epilepsy. Compared with existing tests, this sensor offers a faster and more accurate way to monitor AEDs, which is crucial for optimizing therapy and improving patient outcomes. Overall, the proposed disposable sensor chip based on MIP-CPs represents a significant advancement in AED monitoring, with the potential for rapid, accurate, and convenient point-of-care testing.

Funder

KAKENHI

Eisai Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Brief History of Anti-seizure Drug Development;Rho;Epilepsia Open,2018

2. TRPC Channels as Emerging Targets for Seizure Disorders;Yu;Trends Pharmacol. Sci.,2022

3. WHO (2019). EPILEPSY a Public Health Imperative, International League Against Epilepsy.

4. The Pharmacological Treatment of Epilepsy: Recent Advances and Future Perspectives;Perucca;Acta Epileptol.,2021

5. Unusual Side Effects of Levetiracetam;Badarny;BMJ Case Rep.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3