Long-Term Effects of Climate and Litter Chemistry on Rates and Stable Fractions of Decomposing Scots Pine and Norway Spruce Needle Litter—A Synthesis

Author:

Berg BjörnORCID,Lönn Mikael

Abstract

We have reviewed information on early-, late- and limit-value decomposition stages for litter of Norway spruce (Picea abies) and Scots pine (Pinus silvestris). This synthesis covers c 16 studies/papers made along a climatic gradient; range in mean annual temperature (MAT) from −1 to +7 °C and mean annual precipitation (MAP) from 425 to 1070 mm. Scots pine has an early stage dominated by carbohydrate decomposition and a late stage dominated by decomposition of lignin; Norway spruce has just one stage dominated by lignin decomposition. We used data for annual mass loss to identify rate-regulating factors in both stages; climate data, namely, MAT and MAP, as well as substrate properties, namely, nitrogen (N), acid unhydrolyzable residue (AUR), manganese (Mn). Early-stage decomposition for Scots pine litter was dominated positively by MAT; the late stage was dominated negatively by MAT, N, and AUR, changing with decomposition stage; there was no effect of Mn. Norway spruce litter had no early stage; decomposition in the lignin-dominated stage was mainly negative to MAP, a negative relationship to AUR and non-significant relationships to N and MAT. Mn had a positive relationship. Limit values for decomposition, namely, the accumulated mass loss at which decomposition is calculated to be zero, were related positively to Mn and AUR for Scots pine litter and negatively to AUR for Norway spruce litter. With different sets of rate-regulating factors as well as different compounds/elements related to the limit values, the decomposition patterns or pathways are different.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3