A Fine-Grained Bird Classification Method Based on Attention and Decoupled Knowledge Distillation

Author:

Wang Kang,Yang Feng,Chen Zhibo,Chen YixinORCID,Zhang Ying

Abstract

Classifying birds accurately is essential for ecological monitoring. In recent years, bird image classification has become an emerging method for bird recognition. However, the bird image classification task needs to face the challenges of high intraclass variance and low inter-class variance among birds, as well as low model efficiency. In this paper, we propose a fine-grained bird classification method based on attention and decoupled knowledge distillation. First of all, we propose an attention-guided data augmentation method. Specifically, the method obtains images of the object’s key part regions through attention. It enables the model to learn and distinguish fine features. At the same time, based on the localization–recognition method, the bird category is predicted using the object image with finer features, which reduces the influence of background noise. In addition, we propose a model compression method of decoupled knowledge distillation. We distill the target and nontarget class knowledge separately to eliminate the influence of the target class prediction results on the transfer of the nontarget class knowledge. This approach achieves efficient model compression. With 67% fewer parameters and only 1.2 G of computation, the model proposed in this paper still has a 87.6% success rate, while improving the model inference speed.

Funder

Smart Garden Construction Specifications

Forestry, Grass Technology Promotion APP Information Service

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3