Analysis of Promoter Methylation of the Bovine FOXO1 Gene and Its Effect on Proliferation and Differentiation of Myoblasts

Author:

Shi Pengfei,Ruan YongORCID,Liu Wenjiao,Sun Jinkui,Xu Jiali,Xu HouqiangORCID

Abstract

This study aimed to explore the regulatory role of FOXO1 promoter methylation on its transcriptional level and unravel the effect of FOXO1 on the proliferation and differentiation of bovine myoblasts. Bisulfite sequencing polymerase chain reaction (BSP) and real-time quantitative PCR were performed to determine the methylation status and transcript levels of the FOXO1 promoter region at different growth stages. BSP results showed that the methylation level in the calf bovine (CB) group was significantly higher than that in the adult bovine (AB) group (p < 0.05). On the other hand, qRT-PCR results indicated that the mRNA expression level in the AB group was significantly higher than that in the CB group (p < 0.05), suggesting a significant decrease in gene expression at high levels of DNA methylation. CCK-8 and flow cytometry were applied to determine the effect of silencing the FOXO1 gene on the proliferation of bovine myoblasts. Furthermore, qRT-PCR and Western blot were conducted to analyze the expression of genes associated with the proliferation and differentiation of bovine myoblasts. Results from CCK-8 revealed that the short hairpin FOXO1 (shFOXO1) group significantly promoted the proliferation of myoblasts compared to the short-hairpin negative control (shNC) group (p < 0.05). Flow cytometry results showed a significant decrease in the number of the G1 phase cells (p < 0.05) and a significant increase in the number of the S phase cells (p < 0.05) in the shFOXO1 group compared to the shNC group. In addition, the expression of key genes for myoblast proliferation (CDK2, PCNA, and CCND1) and differentiation (MYOG, MYOD, and MYHC) was significantly increased at both mRNA and protein levels (p < 0.05). In summary, this study has demonstrated that FOXO1 transcription is regulated by methylation in the promoter region and that silencing FOXO1 promotes the proliferation and differentiation of bovine myoblasts. Overall, our findings lay the foundation for further studies on the regulatory role of epigenetics in the development of bovine myoblasts.

Funder

National Natural Science Foundation of China Project

Ministry of Education Program to Promote Research Cooperation

Ministry of Education Program to Promote Research Cooperation, and the High-Level Talent Training with U.S. University Region

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3