Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System

Author:

Kuriakose MajuORCID,Nguyen Christopher D.,Kuniyil Ajith Singh MithunORCID,Mallidi Srivalleesha

Abstract

Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3