Numerical Study of Lorentz Force Interaction with Micro Structure in Channel Flow

Author:

Ahmad ShabbirORCID,Ali Kashif,Ahmad SohailORCID,Cai JianchaoORCID

Abstract

The heat transfer Magnetohydrodynamics flows have been potentially used to enhance the thermal characteristics of several systems such as heat exchangers, electromagnetic casting, adjusting blood flow, X-rays, magnetic drug treatment, cooling of nuclear reactors, and magnetic devices for cell separation. Our concern in this article is to numerically investigate the flow of an incompressible Magnetohydrodynamics micropolar fluid with heat transportation through a channel having porous walls. By employing the suitable dimensionless coordinates, the flow model equations are converted into a nonlinear system of dimensionless ordinary differential equations, which are then numerically treated for different preeminent parameters with the help of quasi-linearization. The system of complex nonlinear differential equations can efficiently be solved using this technique. Impact of the problem parameters for microrotation, temperature, and velocity are interpreted and discussed through tables and graphs. The present numerical results are compared with those presented in previous literature and examined to be in good contact with them. It has been noted that the imposed magnetic field acts as a frictional force which not only increases the shear stresses and heat transfer rates at the channel walls, but also tends to rotate the micro particles in the fluid more rapidly. Furthermore, viscous dissipation may raise fluid temperature to such a level that the possibility of thermal reversal exists, at the geometric boundaries of the domain. It is therefore recommended that external magnetic fields and viscous dissipation effects may be considered with caution in applications where thermal control is required.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. An Experimental Investigation of Additives Injected into the Boundary Layer of an Underwater Body;Vogel,1964

2. The Effect of Additives on Fluid Friction;Fabula,1964

3. Theory of Micropolar Fluids

4. Theory of thermomicrofluids

5. Microcontinuum fluid mechanics—A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3