Abstract
The Brushless Doubly-Fed Reluctance Generator (BDFRG) is a potential alternative to the Doubly Fed Induction Generator (DFIG) in wind power applications owing to its reasonable cost, competitive performance, and high reliability. In comparison with the Brushless Doubly-Fed Induction Generator (BDFIG), the BDFRG is more efficient and easier to control owing to the cage-less rotor. One of the most preferable advantages of BDFRG over DFIG is the inherently better performance under unbalanced grid conditions. The study conducted in this paper showed that conventional vector control of the BDFRG results in excessive oscillations of the primary active/reactive power, electromagnetic torque, and primary/secondary currents in this case. In order to address such limitations, this paper presented a new control strategy for the unbalanced operation of BDFRG-based wind generation systems. A modified vector control scheme was proposed with the capability to control the positive and the negative sequences of the secondary currents independently, thus greatly reducing the adverse implications of the unbalanced supply. The controller performance has been validated by simulations using a 1.5 MW BDFRG dynamical model built upon the positive and negative sequence equations. The main benefits of the new control strategy are quantified in comparison with conventional PI current control design.
Funder
MDPI Energies Editorial Office - 100% discount
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献