Energy Dissipation during Surface Interaction of an Underactuated Robot for Planetary Exploration

Author:

Wiśniewski ŁukaszORCID,Grygorczuk Jerzy,Zajko Paweł,Przerwa Mateusz,Wasilewski Gordon,Gurgurewicz JoannaORCID,Mège DanielORCID

Abstract

The article summarizes research on essential contributors to energy dissipation in an actuator for an exemplary planetary exploration hopping robot. It was demonstrated that contact dynamics could vary significantly depending on the surface type. As a result, regolith is a significant uncertainty factor to the control loop and plays a significant contribution in the control system development of future planetary exploration robots. The actual prototype of the actuating mechanism was tested on a reference surface and then compared with various surfaces (i.e., Syar, quartz sand, expanded clay, and quartz aggregate) to estimate the dissipation of the energy in the initial phase of hopping. Test outcomes are compared with multibody analysis. The research enhances trajectory planning and adaptive control of future hopping robots by determining three significant types of energy losses in the system and, most importantly, determining energy dissipation coefficients in contact with the various surfaces (i.e., from 4% to 53% depending on the surface type). The actual step-by-step methodology is proposed to analyze energy dissipation aspects for a limited number of runs, as it is a case for space systems.

Funder

Narodowe Centrum Nauki

European Space Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3