Abstract
Photovoltaic (PV) modules are generally considered to be the most reliable components of PV systems. The PV module has a high probability of being able to perform adequately for 30 years under typical operating conditions. In order to evaluate the long-term performance of a PV module under diversified terrestrial conditions, outdoor-performance data should be used. However, this requires a wait of 25 years to determine the module reliability, which is highly undesirable. Thus, accelerated-stress tests performed in the laboratory by mimicking different field conditions are important for understanding the performance of a PV module. In this paper, we discuss PV-module degradation types and different accelerated-stress types that are used to evaluate the PV-module reliability and durability for life expectancy before using them in the real field. Finally, prevention and correction measures are described to minimize economic losses.
Funder
Korea Electric Power Corporation
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献