Abstract
The negative impacts of catastrophic fire and explosion accidents due to copper corrosion problems of oil-filled electrical transformers are still in the spotlight due to a lack of effective methods for early fault detection. To address this gap, a condition monitoring (CM) procedure that can detect such problems in the initial stage is proposed in this paper. The suggested CM procedure is based on identified measurable variables, which are the relevant by-products of the corrosion reaction, and utilizes an Early Fault Diagnosis (EFD) model to detect and solve the copper corrosion problems. The EFD model includes a fault trend chart that can track a fault progression during the useful life of transformers. The purpose of this paper is to verify and validate the effectiveness of the suggested CM procedure by an empirical study in a power plant. The result of applying this procedure was early detection of copper corrosion problems in two transformers with suspected copper corrosion propagation from a total of 84. The corrective action was adding an optimized amount of a passivator, an anticorrosion additive, to suppress the corrosion reaction at the correct time. The main conclusion of this study is the importance of early detection of transformer faults to avoid the negative impacts on societal, company, and individual levels.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献