Conceptual Design of an Energy System for High Altitude Airships Considering Thermal Effect

Author:

Dai Qiumin,Xing Daoming,Fang Xiande,Zhao Yingjie

Abstract

High altitude airships possess tremendous potential for long-endurance spot hovering platforms for both commercial and strategic applications. The energy system, which is mainly made up of solar array and regenerative fuel cell, is the key component of a high altitude airship. The thermal effect is a major factor that affects the performance of the energy system of long endurance stratospheric vehicles. In this paper, a conceptual design method focusing on the thermal and power characteristics of an energy system for stratospheric airships is proposed. The effect of thermal behavior of solar array on the energy system is analyzed. An optimized case is obtained on the consideration of power supply, thermal behaviors of helium and solar array. Results show that the maximum temperature difference of the solar array may be reduced by about 20 K and the mass of payload can be improved by up to 5%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Research Fund of Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nan-jing University of Aeronautics and Astronautics

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3