Abstract
The inherent errors of low-cost inertial sensors cause significant heading drift that accumulates over time, making it difficult to rely on Pedestrian Dead Reckoning (PDR) for navigation over a long period. Moreover, the flexible portability of the smartphone poses a challenge to PDR, especially for heading determination. In this work, we aimed to control the PDR drift under the conditions of the unconstrained smartphone to eventually enhance the PDR performance. To this end, we developed a robust step detection algorithm that efficiently captures the peak and valley events of the triggered steps regardless of the device’s pose. The correlation between these events was then leveraged as distinct features to improve smartphone pose detection. The proposed PDR system was then designed to select the step length and heading estimation approach based on a real-time walking pattern and pose discrimination algorithm. We also leveraged quasi-static magnetic field measurements that have less disturbance for estimating reliable compass heading and calibrating the gyro heading. Additionally, we also calibrated the step length and heading when a straight walking pattern is observed between two base nodes. Our results showed improved device pose recognition accuracy. Furthermore, robust and accurate results were achieved for step length, heading and position during long-term navigation under unconstrained smartphone conditions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献