Design and Characterization of a Passive Wireless DNA Sensor

Author:

Xu Haibo,Jia Yi,Cunci LisandroORCID

Abstract

This paper presents a concept for a passive wireless DNA sensing platform that exploits a multidisciplinary area, synthesizing the conventional DNA capacitive sensing mechanism and the surface-based conformational characterization throughout DNA immobilization and hybridization. The resonant frequency shift, caused by the change of capacitance throughout DNA immobilization and hybridization and occurring on top of an interdigital capacitor, is monitored by means of an impedance analyzer. 32 samples were measured throughout the experiment and the average capacitance measurements represented a variety of surface charges resulting from DNA molecule immobilization and hybridization. The capacitance changed from 11.58 pF to 114.5 pF when specific ssDNA was attached to electrodes and then increased to 218.6 pF once complementary strand DNA was introduced and hybridized with existing DNA chains. In addition, using impedance analyzer measurements, the resonant frequency decreased from 2.01 MHz to 1.97 MHz in the presence of ssDNA and decreased further down to 0.95 MHz after the complementary strand DNA was deposited.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3