Latitude and Weather Influences on Sun Light Quality and the Relationship to Tree Growth

Author:

Chiang CamiloORCID,Olsen Jorunn E.,Basler David,Bånkestad Daniel,Hoch GünterORCID

Abstract

Natural changes in photoperiod, light quantity, and quality play a key role in plant signaling, enabling daily and seasonal adjustment of growth and development. Growing concern about the global climate crisis together with scattered reports about the interactive effects of temperature and light parameters on plants necessitates more detailed information about these effects. Furthermore, the actual light emitting diode (LED) lighting technology allows mimicking of light climate scenarios more similar to natural conditions, but to fully exploit this in plant cultivation, easy-to-apply knowledge about the natural variation in light quantity and spectral distribution is required. Here, we aimed to provide detailed information about short and long-term variation in the natural light climate, by recording the light quantity and quality at an open site in Switzerland every minute for a whole year, and to analyze its relationship to a set of previous tree seedling growth experiments. Changes in the spectral composition as a function of solar elevation angle and weather conditions were analyzed. At a solar elevation angle lower than 20°, the weather conditions have a significant effect on the proportions of blue (B) and red (R) light, whereas the proportion of green (G) light is almost constant. At a low solar elevation, the red to far red (R:FR) ratio fluctuates between 0.8 in cloudy conditions and 1.3 on sunny days. As the duration of periods with low solar angles increases with increasing latitude, an analysis of previous experiments on tree seedlings shows that the effect of the R:FR ratio correlates with the responses of plants from different latitudes to light quality. We suggest an evolutionary adaptation where growth in seedlings of selected tree species from high latitudes is more dependent on detection of light quantity of specific light qualities than in such seedlings originating from lower latitudes.

Funder

Marie Sklodowska - PlantHUB

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3