Abstract
Mountain regions are vulnerable to climate change but information about the climate sensitivity of seasonally snow-covered, subalpine ecosystems is still lacking. We investigated the impact of climatic conditions and pedogenesis on the C and N cycling along an elevation gradient under a Larch forest in the northwest (NW) Italian Alps. The environmental gradient that occurs over short distances makes elevation a good proxy for understanding the response of forest soils and nutrient cycling to different climatic conditions. Subalpine forests are located in a sensitive elevation range—the prospected changes in winter precipitation (i.e., shift of snowfalls to higher altitude, reduction of snow cover duration, etc.) could determine strong effects on soil nitrogen and carbon cycling. The work was performed in the western Italian Alps (Long-Term Ecological Research- LTER site Mont Mars, Fontainemore, Aosta Valley Region). Three sites, characterized by similar bedrock lithology and predominance of Larix decidua Mill., were selected along an elevation gradient (1550–1900 m above sea level-a.s.l.). To investigate the effects on soil properties and soil solution C and N forms of changing abiotic factors (e.g., snow cover duration, number of soil freeze/thaw cycles, intensity and duration of soil freezing, etc.) along the elevation gradient, soil profiles were opened in each site and topsoils and soil solutions were periodically collected from 2015 to 2016. The results indicated that the coldest and highest soil (well-developed Podzol) showed the highest content of extractable C and N forms (N-NH4+, DON, DOC, Cmicr) compared to lower-elevation Cambisols. The soil solution C and N forms (except N-NO3−) did not show significant differences among the sites. Independently from elevation, the duration of soil freezing, soil volumetric water content, and snow cover duration (in order of importance) were the main abiotic factors driving soil C and N forms, revealing how little changes in these parameters could considerably influence C and N cycling under this subalpine forest stand.
Reference89 articles.
1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Team,2014
2. Soil development along an elevational transect in the western Sierra Nevada, California;Dahlgren;Geoderma,1997
3. Past and future changes in climate and hydrological indicators in the US Northeast;Hayhoe;Clim. Dyn.,2007
4. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA;Campbell;Hydrol. Process.,2010
5. Different approaches to evaluating soil quality using biochemical properties;Gil-Sotres;Soil Biol. Biochem.,2005
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献