Optimal Force Allocation and Position Control of Hybrid Pneumatic–Electric Linear Actuators

Author:

Rouzbeh BehradORCID,Bone Gary M.

Abstract

Hybrid pneumatic–electric actuators (HPEAs) are redundant actuators that combine the large force, low bandwidth characteristics of pneumatic actuators with the large bandwidth, small force characteristics of electric actuators. It has been shown that HPEAs can provide both accurate position control and high inherent safety, due to their low mechanical impedance, making them a suitable choice for driving the joints of assistive, collaborative, and service robots. If these characteristics are mathematically modeled, input allocation techniques can improve the HPEA’s performance by distributing the required input (force or torque) between the redundant actuators in accordance with each actuator’s advantages and limitations. In this paper, after developing a model for a HPEA-driven system, three novel model-predictive control (MPC) approaches are designed that solve the position tracking and input allocation problem using convex optimization. MPC is utilized since the input allocation can be embedded within the motion controller design as a single optimization problem. A fourth approach based on conventional linear controllers is included as a comparison benchmark. The first MPC approach uses a model that includes the dynamics of the payload and pneumatics; and performs the motion control using a single loop. The latter methods simplify the MPC law by separating the position and pressure controllers. Although the linear controller was the most computationally efficient, it was inferior to the MPC-based controllers in position tracking and force allocation performance. The third MPC-based controller design demonstrated the best position tracking with RMSE of 46%, 20%, and 55% smaller than the other three approaches. It also demonstrated sufficient speed for real-time operation.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3