Smartphone–Camera–Based Water Reflectance Measurement and Typical Water Quality Parameter Inversion

Author:

Gao Min,Li JunshengORCID,Wang Shenglei,Zhang FangfangORCID,Yan Kai,Yin Ziyao,Xie Ya,Shen Wei

Abstract

Crowdsourced data from smart devices play an increasingly important role in water quality monitoring. However, guaranteeing and evaluating crowdsourced data quality is a key issue. This study aims to extract more accurate water reflectance data from smartphone photographs with variable exposure parameters, and to test the usability of these data in deriving water quality parameters. A set of low–cost reference cards was designed to be placed in the center of the photograph near the water surface, and a calculation model was proposed to convert the photograph digital numbers (DNs) to water reflectance. A nonlinear DN–to–reflectance model was constructed using the inherent reflectance and DN of the reference card in the photograph. Then, the reflectance of the water surface in the same photograph was estimated. During the evaluation of this scheme in seven different waterbodies with 112 sampling sites, small differences were observed between the estimated and measured remote sensing reflectance; the average unbiased relative errors (AUREs) for the red, green, and blue bands were 25.7%, 29.5%, and 35.2%, respectively, while the RMSEs for the three bands were 0.0032, 0.0051, 0.0031, respectively. The derived water reflectance data were used to retrieve the Secchi–disk depth (Zsd) and turbidity, with accuracies of 72.4% and 60.2%, respectively. The results demonstrate that the proposed method based on the smartphone camera can be used to derive the remote sensing reflectance and water quality parameters effectively with acceptable accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Key Technologies and Systems of Surface Water Environment Monitoring by Remote Sensing;Zhang;Environ. Monit. China,2019

2. The Importance of ‘Big Data’: A Definition;Beyer,2012

3. 科学大数据与数字地球

4. Agricultural Monitoring and Early Warning in the Era of Big Data;Wu;J. Remote Sens.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3