Land Use Quantile Regression Modeling of Fine Particulate Matter in Australia

Author:

Wu PengORCID,Song YongzeORCID

Abstract

Small data samples are still a critical challenge for spatial predictions. Land use regression (LUR) is a widely used model for spatial predictions with observations at a limited number of locations. Studies have demonstrated that LUR models can overcome the limitation exhibited by other spatial prediction models which usually require greater spatial densities of observations. However, the prediction accuracy and robustness of LUR models still need to be improved due to the linear regression within the LUR model. To improve LUR models, this study develops a land use quantile regression (LUQR) model for more accurate spatial predictions for small data samples. The LUQR is an integration of the LUR and quantile regression, which both have advantages in predictions with a small data set of samples. In this study, the LUQR model is applied in predicting spatial distributions of annual mean PM2.5concentrations across the Greater Sydney Region, New South Wales, Australia, with observations at 19 valid monitoring stations in 2020. Cross validation shows that the goodness-of-fit can be improved by 25.6–32.1% by LUQR models when compared with LUR, and prediction root mean squared error (RMSE) and mean absolute error (MAE) can be reduced by 10.6–13.4% and 19.4–24.7% by LUQR models, respectively. This study also indicates that LUQR is a more robust model for the spatial prediction with small data samples than LUR. Thus, LUQR has great potentials to be widely applied in spatial issues with a limited number of observations.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial and temporal urban air pollution patterns based on limited data of monitoring stations;Journal of Cleaner Production;2024-01

2. Gaps and future directions in research on health effects of air pollution;eBioMedicine;2023-07

3. The second dimension of spatial association;International Journal of Applied Earth Observation and Geoinformation;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3