Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard

Author:

Rodríguez-Febereiro Marta,Dafonte Jorge,Fandiño María,Cancela Javier J.ORCID,Rodríguez-Pérez José RamónORCID

Abstract

The characterization of vineyard soil is a key issue for crop management, which directly affects the quality and yield of grapes. However, traditional laboratory analysis of soil properties is tedious and both time and cost consuming, which is not suitable for precision viticulture. For this reason, a fast and convenient soil characterization technique is needed for soil quality assessment and precision soil management. Here, spectroscopy appears as a suitable alternative to assist laboratory analysis. This work focuses on estimating soil properties by spectroscopy. Our study was carried out using 96 soil samples collected from three vineyards in Rias Baixas Designation of Origen (Galicia, Spain). The soils that were characterized include nitrogen (N), organic matter (OM) and clay content (Clay). The presented work compared two regression techniques (partial least squares (PLSR) and random forest (RF)) and four spectral ranges: visible—VIS (350–700 nm), near infrared—NIR (701–1000 nm), short wave infrared—SWIR (1001–2500 nm) and VIS-NIR-SWIR (350–2500 nm) in order to identify the more suitable prediction models. Moreover, the effect of pre-treatments in reflectance data (smoothing Svitzky–Golay, SG, baseline normalization, BN, first derivative, FD, standard normal variate, SNV, logarithm of 1/reflectance or spectroscopy (SP) and detrending, SNV-D) was evaluated. Finally, continuous maps of the soil properties were created based on estimated values of regression models. Our results identified PLSR as the best regression technique, with less computation time than RF. The data improved after applying transformation in reflectance data, with the best results from spectroscopy pre-treatment (logarithm of 1/Reflectance). PLSR performances have obtained determination coefficients (R2) of 0.69, 0.73 and 0.52 for nitrogen, organic matter, and clay, respectively, with acceptable accuracy (RMSE: 0.03, 1.06 and 2.90 %) in a short time. Furthermore, the mapping of soil vineyards generates information of high interest for the precision viticulture management, as well as a comparison between the methodologies used.

Funder

Centre for Industrial Technological Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3