A TIR-Visible Automatic Registration and Geometric Correction Method for SDGSAT-1 Thermal Infrared Image Based on Modified RIFT

Author:

Chen Jinfen,Cheng Bo,Zhang Xiaoping,Long TengfeiORCID,Chen Bo,Wang Guizhou,Zhang Degang

Abstract

High-resolution thermal infrared (TIR) remote sensing images can more accurately retrieve land surface temperature and describe the spatial pattern of urban thermal environment. The Thermal Infrared Spectrometer (TIS), which has high spatial resolution among spaceborne thermal infrared sensors at present, and global data acquisition capability, is one of the sensors equipped in the SDGSAT-1. It is an important complement to the existing international mainstream satellites. In order to produce standard data products, rapidly and accurately, the automatic registration and geometric correction method needs to be developed. Unlike visible–visible image registration, thermal infrared images are blurred in edge details and have obvious non-linear radiometric differences from visible images, which make it challenging for the TIR-visible image registration task. To address these problems, homomorphic filtering is employed to enhance TIR image details and the modified RIFT algorithm is proposed to achieve TIR-visible image registration. Different from using MIM for feature description in RIFT, the proposed modified RIFT uses the novel binary pattern string to descriptor construction. With sufficient and uniformly distributed ground control points, the two-step orthorectification framework, from SDGSAT-1 TIS L1A image to L4 orthoimage, are proposed in this study. The first experiment, with six TIR-visible image pairs, captured in different landforms, is performed to verify the registration performance, and the result indicates that the homomorphic filtering and modified RIFT greatly increase the number of corresponding points. The second experiment, with one scene of an SDGSAT-1 TIS image, is executed to test the proposed orthorectification framework. Subsequently, 52 GCPs are selected manually to evaluate the orthorectification accuracy. The result indicates that the proposed orthorectification framework is helpful to improve the geometric accuracy and guarantee for the subsequent thermal infrared applications.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal image registration techniques: a comprehensive survey;Multimedia Tools and Applications;2024-01-06

2. Coarse-to-fine matching via cross fusion of satellite images;International Journal of Applied Earth Observation and Geoinformation;2023-12

3. Cloud detection using SDGSAT-1 thermal infrared data;Remote Sensing of Clouds and the Atmosphere XXVIII;2023-10-19

4. Georeferencing Thermal Satellite Images Based on Land Cover Information Extraction;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. Dual-Space Graph-Based Interaction Network for RGB-Thermal Semantic Segmentation in Electric Power Scene;IEEE Transactions on Circuits and Systems for Video Technology;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3