An Efficient High-Resolution Global–Local Network to Detect Lunar Features for Space Energy Discovery

Author:

Jia YutongORCID,Liu Lei,Peng Siqing,Feng MingyangORCID,Wan Gang

Abstract

Lunar craters and rilles are significant topographic features on the lunar surface that will play an essential role in future research on space energy resources and geological evolution. However, previous studies have shown low efficiency in detecting lunar impact craters and poor accuracy in detecting lunar rilles. There is no complete automated identification method for lunar features to explore space energy resources further. In this paper, we propose a new specific deep-learning method called high-resolution global–local networks (HR-GLNet) to explore craters and rilles and to discover space energy simultaneously. Based on the GLNet network, the ResNet structure in the global branch is replaced by HRNet, and the residual network and FPN are the local branches. Principal loss function and auxiliary loss function are used to aggregate global and local branches. In experiments, the model, combined with transfer learning methods, can accurately detect lunar craters, Mars craters, and lunar rilles. Compared with other networks, such as UNet, ERU-Net, HRNet, and GLNet, GL-HRNet has a higher accuracy (88.7 ± 8.9) and recall rate (80.1 ± 2.7) in lunar impact crater detection. In addition, the mean absolute error (MAE) of the GL-HRNet on global and local branches is 0.0612 and 0.0429, which are better than the GLNet in terms of segmentation accuracy and MAE. Finally, by analyzing the density distribution of lunar impact craters with a diameter of less than 5 km, it was found that: (i) small impact craters in a local area of the lunar north pole and highland (5°–85°E, 25°–50°S) show apparent high density, and (ii) the density of impact craters in the Orientale Basin is not significantly different from that in the surrounding areas, which is the direction for future geological research.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3