Author:
Liu Fanfan,Zhao Wenzhe,Zhou Guangyao,Zhao Liangjin,Wei Haoran
Abstract
Vehicle detection in remote sensing imagery is a challenging task because of its inherent attributes, e.g., dense parking, small sizes, various angles, etc. Prevalent vehicle detectors adopt an oriented/rotated bounding box as a basic representation, which needs to apply a distance regression of height, width, and angles of objects. These distance-regression-based detectors suffer from two challenges: (1) the periodicity of the angle causes a discontinuity of regression values, and (2) small regression deviations may also cause objects to be missed. To this end, in this paper, we propose a new vehicle modeling strategy, i.e., regarding each vehicle-rotated bounding box as a saliency area. Based on the new representation, we propose SR-Net (saliency region representation network), which transforms the vehicle detection task into a saliency object detection task. The proposed SR-Net, running in a distance (e.g., height, width, and angle)-regression-free way, can generate more accurate detection results. Experiments show that SR-Net outperforms prevalent detectors on multiple benchmark datasets. Specifically, our model yields 52.30%, 62.44%, 68.25%, and 55.81% in terms of AP on DOTA, UCAS-AOD, DLR 3K Munich, and VEDAI, respectively.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献