Abstract
The autonomous flight of an unmanned aerial vehicle refers to creating a new flight route after self-recognition and judgment when an unexpected situation occurs during the flight. The unmanned aerial vehicle can fly at a high speed of more than 60 km/h, so obstacle recognition and avoidance must be implemented in real-time. In this paper, we propose to recognize objects quickly and accurately by effectively using the H/W resources of small computers mounted on industrial unmanned air vehicles. Since the number of pixels in the image decreases after the resizing process, filtering and object resizing were performed according to the altitude, so that quick detection and avoidance could be performed. To this end, objects up to 60 m in height were classified by subdividing them at 20 m intervals, and objects unnecessary for object detection were filtered with deep learning methods. In the 40 m to 60 m sections, the average speed of recognition was increased by 38%, without compromising the accuracy of object detection.
Funder
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献