Abstract
The main objective of this study is to analyze the spatial and temporal variability of gross and net primary production (GPP and NPP) in Peninsular Spain across 15 years (2004–2018) and determine the relationship of those carbon fluxes with precipitation and air temperature. A time series study of daily GPP, NPP, mean air temperature, and monthly standardized precipitation index (SPI) at 1 km spatial resolution is conducted to analyze the ecosystem status and adaptation to changing environmental conditions. Spatial variability is analyzed for vegetation and specific forest types. Temporal dynamics are examined from a multiresolution analysis based on the wavelet transform (MRA-WT). The Mann–Kendall nonparametric test and the Theil–Sen slope are applied to quantify the magnitude and direction of trends (increasing or decreasing) within the time series. The use of MRA-WT to extract the annual component from daily series increased the number of statistically significant pixels. At pixel level, larger significant GPP and NPP negative changes (p-value < 0.1) are observed, especially in southeastern Spain, eastern Mediterranean coastland, and central Spain. At annual temporal scale, forests and irrigated crops are estimated to have twice the GPP of rainfed crops, shrublands, grasslands, and sparse vegetation. Within forest types, deciduous broadleaved trees exhibited the greatest annual NPP, followed by evergreen broadleaved and evergreen needle-leaved tree species. Carbon fluxes trends were correlated with precipitation. The temporal analysis based on daily TS demonstrated an increase of accuracy in the trend estimates since more significant pixels were obtained as compared to annual resolution studies (72% as to only 17%).
Funder
Ministerio de ciencia e innovación, España
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献