Prediction of Potential Suitable Distribution of Liriodendron chinense (Hemsl.) Sarg. in China Based on Future Climate Change Using the Optimized MaxEnt Model

Author:

Bai Jieyuan1ORCID,Wang Hongcheng1,Hu Yike1

Affiliation:

1. Department of Landscape Architecture, College of Architecture, Tianjin University, Tianjin 300072, China

Abstract

Liriodendron chinense (Hemsl.) Sarg. (Magnoliales: Magnoliaceae), valued for its medicinal properties and timber and as an ornamental plant, is now classified as an endangered species. Investigating how future climate-change scenarios might affect the potential geographic distribution of L. chinense will provide a crucial scientific basis for its protection and management strategies. The MaxEnt model was calibrated using the ENMeval optimization package, and then it was coupled with ArcGIS 10.8 to forecast the possible distribution areas of L. chinense in China, utilizing elevation data, bioclimatic factors, and human footprint as environmental variables. The results indicate: (1) The optimal model parameters were set as follows: FC = LQ, RM = 0.5, the MaxEnt model demonstrated high predictive accuracy and minimal overfitting; (2) The total suitable habitat area for the potential geographical distribution of L. chinense during the current period is estimated at 151.55 × 104 km2, predominantly located in central, eastern, and southwestern regions of China; (3) The minimum temperature of the coldest month (bio6), precipitation of the driest month (bio14), precipitation of the driest quarter (bio17), precipitation of the warmest quarter (bio18), elevation (alt), and human footprint (hf) are the main environmental variables determining the suitable habitat distribution of L. chinense; (4) During the period from 2041 to 2060, under the carbon emission scenarios of SSP126, SSP245, and SSP370, the suitable habitat for L. chinense shows varying degrees of increase compared to the current period. However, under the highest concentration scenario of SSP585, the suitable habitat area decreases to some extent; (5) The distribution of L. chinense is likely to move towards higher latitudes and elevations in the future due to changes in the climate. This research provides a comprehensive analysis of the potential impacts of climate change on L. chinense, offering valuable information for its protection and management under future climatic conditions.

Funder

National Natural Science Foundation of China Key Program

Publisher

MDPI AG

Reference70 articles.

1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models;Xiang;Eng. J. Wuhan Univ.,2021

3. Editorial: Water resources and climate change;Su;J. Water Clim. Change,2018

4. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off;Anderegg;Proc. Natl. Acad. Sci. USA,2012

5. A climate-change risk analysis for world ecosystems;Scholze;Proc. Natl. Acad. Sci. USA,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3