Recent Advances in Cerium Oxide-Based Memristors for Neuromorphic Computing

Author:

Ali Sarfraz1,Ullah Muhammad Abaid2ORCID,Raza Ali3,Iqbal Muhammad Waqas1ORCID,Khan Muhammad Farooq4ORCID,Rasheed Maria5,Ismail Muhammad6ORCID,Kim Sungjun6

Affiliation:

1. Department of Physics, Riphah International University, Lahore Campus, 13-KM Raiwand Road, Lahore 54000, Pakistan

2. Department of Physics, University of Okara, Okara 56300, Pakistan

3. Department of Physics “Ettore Pancini”, University of Naples ‘Federico II’, Piazzale Tecchio, 80, 80125 Naples, Italy

4. Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea

5. Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea

6. Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

This review article attempts to provide a comprehensive review of the recent progress in cerium oxide (CeO2)-based resistive random-access memories (RRAMs). CeO2 is considered the most promising candidate because of its multiple oxidation states (Ce3+ and Ce4+), remarkable resistive-switching (RS) uniformity in DC mode, gradual resistance transition, cycling endurance, long data-retention period, and utilization of the RS mechanism as a dielectric layer, thereby exhibiting potential for neuromorphic computing. In this context, a detailed study of the filamentary mechanisms and their types is required. Accordingly, extensive studies on unipolar, bipolar, and threshold memristive behaviors are reviewed in this work. Furthermore, electrode-based (both symmetric and asymmetric) engineering is focused for the memristor’s structures such as single-layer, bilayer (as an oxygen barrier layer), and doped switching-layer-based memristors have been proved to be unique CeO2-based synaptic devices. Hence, neuromorphic applications comprising spike-based learning processes, potentiation and depression characteristics, potentiation motion and synaptic weight decay process, short-term plasticity, and long-term plasticity are intensively studied. More recently, because learning based on Pavlov’s dog experiment has been adopted as an advanced synoptic study, it is one of the primary topics of this review. Finally, CeO2-based memristors are considered promising compared to previously reported memristors for advanced synaptic study in the future, particularly by utilizing high-dielectric-constant oxide memristors.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3