Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors

Author:

Shao Siqi1,Liu Song12ORCID,Xue Changguo13ORCID

Affiliation:

1. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan 232001, China

3. CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China

Abstract

Bimetallic selenide compounds show great potential as supercapacitor electrode materials in energy storage and conversion applications. In this work, a coral-like MnCo selenide was grown on nickel foam using a facile electrodeposition method to prepare binder-free supercapacitor electrodes. The heating temperature was varied to tune the morphology and crystal phase of these electrodes. Excellent electrochemical performance was achieved due to the unique coral-like, dendritic- dispersed structure and a bimetallic synergistic effect, including high specific capacitance (509 C g−1 at 1 A g−1) and outstanding cycling stability (94.3% capacity retention after 5000 cycles). Furthermore, an asymmetric supercapacitor assembled with MnCo selenide as the anode and active carbon as the cathode achieved a high specific energy of 46.2 Wh kg−1 at 800 W kg−1. The work demonstrates that the prepared coral-like MnCo selenide is a highly promising energy storage material.

Funder

Anhui Province University Natural Science Research Project

Independent Research fund of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining

Key Research and Development Program Projects in Anhui Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3