MOF-Derived Nitrogen-Doped Porous Carbon Polyhedrons/Carbon Nanotubes Nanocomposite for High-Performance Lithium–Sulfur Batteries

Author:

Chen Jun1,Yang Yuanjiang2,Yu Sheng3ORCID,Zhang Yi12ORCID,Hou Jiwei12,Yu Nengfei12,Fang Baizeng4ORCID

Affiliation:

1. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China

2. School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China

3. Department of Chemistry, Washington State University, Pullman, WA 99164, USA

4. Department of Energy Storage Science and Technology, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Nanocomposites that combine porous materials and a continuous conductive skeleton as a sulfur host can improve the performance of lithium–sulfur (Li-S) batteries. Herein, carbon nanotubes (CNTs) anchoring small-size (~40 nm) N-doped porous carbon polyhedrons (S-NCPs/CNTs) are designed and synthesized via annealing the precursor of zeolitic imidazolate framework-8 grown in situ on CNTs (ZIF-8/CNTs). In the nanocomposite, the S-NCPs serve as an efficient host for immobilizing polysulfides through physical adsorption and chemical bonding, while the interleaved CNT networks offer an efficient charge transport environment. Moreover, the S-NCP/CNT composite with great features of a large specific surface area, high pore volume, and short electronic/ion diffusion depth not only demonstrates a high trapping capacity for soluble lithium polysulfides but also offers an efficient charge/mass transport environment, and an effective buffering of volume changes during charge and discharge. As a result, the Li-S batteries based on a S/S-NCP/CNT cathode deliver a high initial capacity of 1213.8 mAh g−1 at a current rate of 0.2 C and a substantial capacity of 1114.2 mAh g−1 after 100 cycles, corresponding to a high-capacity retention of 91.7%. This approach provides a practical research direction for the design of MOF-derived carbon materials in the application of high-performance Li–S batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3