Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit

Author:

Alharbi Mohammed1ORCID,Edwards Gerard1,Stocker Richard2

Affiliation:

1. Division of Electronic and Electrical Engineering, School of Engineering, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 2ET, UK

2. Department of Computer Science, Electronics and Electrical Engineering, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK

Abstract

Quantum-dot cellular automata (QCA) are a promising nanoscale computing technology that exploits the quantum mechanical tunneling of electrons between quantum dots in a cell and electrostatic interaction between dots in neighboring cells. QCA can achieve higher speed, lower power, and smaller areas than conventional, complementary metal-oxide semiconductor (CMOS) technology. Developing QCA circuits in a logically and physically reversible manner can provide exceptional reductions in energy dissipation. The main challenge is to maintain reversibility down to the physical level. A crucial component of a computer’s central processing unit (CPU) is the arithmetic logic unit (ALU), which executes multiple logical and arithmetic functions on the data processed by the CPU. Current QCA ALU designs are either irreversible or logically reversible; however, they lack physical reversibility, a crucial requirement to increase energy efficiency. This paper shows a new multilayer design for a QCA ALU that can carry out 16 different operations and is both logically and physically reversible. The design is based on reversible majority gates, which are the key building blocks. We use QCADesigner-E software to simulate and evaluate energy dissipation. The proposed logically and physically reversible QCA ALU offers an improvement of 88.8% in energy efficiency. Compared to the next most efficient 16-operation QCA ALU, this ALU uses 51% fewer QCA cells and 47% less area.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Quantum-Dot Cellular Automata Nanocomputing Circuits;Electronics;2024-07-13

2. Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata;Nano Communication Networks;2024-07

3. Reversible Cellular Automata Based Cryptosystem;Electronics;2024-06-27

4. An Efficient Design of Multilayer Reversible Arithmetic & Logic Unit in Quantum-Dot Cellular Automata for Low Power Applications;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15

5. Introduction to Hybrid Nanomaterial;Advances in Chemical and Materials Engineering;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3