Design, Synthesis, and Characterization of a Novel Blue-Green Long Afterglow BaYAl3O7:Eu2+, Nd3+ Phosphor and Its Anti-Counterfeiting Application

Author:

Wu Jiao1,Liu Quanxiao1,Gao Peng1,Wang Jigang1ORCID,Qi Yuansheng1,Li Zhenjun23,Li Junming4ORCID,Jiang Tao5

Affiliation:

1. Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China

2. National Center for Nanoscience and Technology, CAS Key Laboratory of Nanophotonic Materials and Devices (Preparatory), Beijing 100190, China

3. The GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, China

4. Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, China

5. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Abstract

Herein, a series of novel long afterglow nanophosphors BaYAl3O7:Eu2+, Nd3+ was synthesized by the combustion method. The investigation encompassed the characterization of X-ray diffraction, morphology, chemical valence, elemental composition, and photoluminescence behavior of BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ nanoparticles. Under 365 nm excitation, BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ show emission bands centered at 497 nm and 492 nm, which are attributed to the 4f65d→4f7 transition of Eu2+ ions. The optimal samples of BaYAl3O7:0.03Eu2+ and BaYAl3O7:0.03Eu2+, 0.02Nd3+ have average fluorescence lifetimes of 850 ns and 1149 ns, respectively. The co-doping of Nd3+ ions as the trap centers produced long afterglow luminescence properties, and the afterglow time could reach up to 8 min. Furthermore, the fluorescent powder can be mixed with polyacrylic acid to prepare anti-counterfeiting inks; a clover pattern and snowflake pattern have been successfully printed using screen printing technology, proving its potential application in the field of anti-counterfeiting.

Funder

Beijing Natural Science Foundation

General Project of Beijing Municipal Education Commission Science and Technology Program

Research and development of intelligent packaging for cultural relics

Construction and application transformation of cross media cloud platform for printing and packaging anticounterfeiting and traceability

National Natural Science Foundation of China

the general project of fundamental research of BIGC

Initial funding for the Doctoral Program of BIGC

the general project of science and technology of Beijing Municipal Education Commission

the Key Area Research and Development Program of Guangdong Province

the GBA National Institute for Nanotechnology Innovation

the National Key R&D Program of China

National key research and development program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3